10 research outputs found

    Assimilation of backscatter observations into a hydrological model: a case study in Belgium using ASCAT data

    Get PDF
    We investigated the possibilities of improving hydrological simulations by assimilating radar backscatter observations from the advanced scatterometer (ASCAT) in the hydrological model SCHEME using a calibrated water cloud model (WCM) as an observation operator. The WCM simulates backscatter based on soil moisture and vegetation data and can therefore be used to generate observation predictions for data assimilation. The study was conducted over two Belgian catchments with different hydrological regimes: the Demer and the Ourthe catchment. The main differences between the two catchments can be summarized in precipitation and streamflow levels, which are higher in the Ourthe. The data assimilation method adopted here was the ensemble Kalman filter (EnKF), whereby the uncertainty of the state estimate was described via the ensemble statistics. The focus was on the optimization of the EnKF, and possible solutions to address biases introduced by ensemble perturbations were investigated. The latter issue contributes to the fact that backscatter data assimilation only marginally improves the overall scores of the discharge simulations over the deterministic reference run, and only for the Ourthe catchment. These performances, however, considerably depend on the period considered within the 5 years of analysis. Future lines of research on bias correction, the data assimilation of soil moisture and backscatter data are also outlined

    Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles

    Get PDF
    The final authenticated publication is available at https://doi.org/10.1109/TGRS.2018.2858004.Soil moisture is a key environmental variable, important to, e.g., farmers, meteorologists, and disaster management units. Here, we present a method to retrieve surface soil moisture (SSM) from the Sentinel-1 (S-1) satellites, which carry C-band Synthetic Aperture Radar (CSAR) sensors that provide the richest freely available SAR data source so far, unprecedented in accuracy and coverage. Our SSM retrieval method, adapting well-established change detection algorithms, builds the first globally deployable soil moisture observation data set with 1-km resolution. This paper provides an algorithm formulation to be operated in data cube architectures and high-performance computing environments. It includes the novel dynamic Gaussian upscaling method for spatial upscaling of SAR imagery, harnessing its field-scale information and successfully mitigating effects from the SAR's high signal complexity. Also, a new regression-based approach for estimating the radar slope is defined, coping with Sentinel-1's inhomogeneity in spatial coverage. We employ the S-1 SSM algorithm on a 3-year S-1 data cube over Italy, obtaining a consistent set of model parameters and product masks, unperturbed by coverage discontinuities. An evaluation of therefrom generated S-1 SSM data, involving a 1-km soil water balance model over Umbria, yields high agreement over plains and agricultural areas, with low agreement over forests and strong topography. While positive biases during the growing season are detected, the excellent capability to capture small-scale soil moisture changes as from rainfall or irrigation is evident. The S-1 SSM is currently in preparation toward operational product dissemination in the Copernicus Global Land Service.5205392

    Irrigation Mapping Using Sentinel-1 and Sentinel-2 Data

    No full text
    International audienc

    Irrigation Timing Retrieval at the Plot Scale Using Surface Soil Moisture Derived from Sentinel Time Series in Europe

    No full text
    International audienceThe difficulty of calculating the daily water budget of irrigated fields is often due to the uncertainty surrounding irrigation amounts and timing. The automated detection of irrigation events has the potential to greatly simplify this process, and the combination of high-resolution SAR (Sentinel-1) and optical satellite observations (Sentinel-2) makes the detection of irrigation events feasible through the use of a surface soil moisture (SSM) product. The motivation behind this study is to utilize a large irrigation dataset (collected during the ESA Irrigation + project over five sites in three countries over three years) to analyze the performance of an established algorithm and to test potential improvements. The study’s main findings are (1) the scores decrease with SSM observation frequency; (2) scores decrease as irrigation frequency increases, which was supported by better scores in France (more sprinkler irrigation) than in Germany (more localized irrigation); (3) replacing the original SSM model with the force-restore model resulted in an improvement of about 6% in the F-score and narrowed the error on cumulative seasonal irrigation; (4) the Sentinel-1 configuration (incidence angle, trajectory) did not show a significant impact on the retrieval of irrigation, which supposes that the SSM is not affected by these changes. Other aspects did not allow a definitive conclusion on the irrigation retrieval algorithm: (1) the lower scores obtained with small NDVI compared to large NDVI were counter-intuitive but may have been due to the larger number of irrigation events during high vegetation periods; (2) merging different runs and interpolating all SSM data for one run produced comparable F-scores, but the estimated cumulative sum of irrigation was around −20% lower compared to the reference dataset in the best cases

    Soil Moisture from Fusion of Scatterometer and SAR: Closing the Scale Gap with Temporal Filtering

    No full text
    Soil moisture is a key environmental variable, important to e.g., farmers, meteorologists, and disaster management units. We fuse surface soil moisture (SSM) estimates from spatio-temporally complementary radar sensors through temporal filtering of their joint signal and obtain a kilometre-scale, daily soil water content product named SCATSAR-SWI. With 25 km Metop ASCAT SSM and 1 km Sentinel-1 SSM serving as input, the SCATSAR-SWI is globally applicable and achieves daily full coverage over operated areas. We employ a near-real-time-capable SCATSAR-SWI algorithm on a fused 3 year ASCAT-Sentinel-1-SSM data cube over Italy, obtaining a consistent set of model parameters, unperturbed by coverage discontinuities. An evaluation of a therefrom generated SCATSAR-SWI dataset, involving a 1 km Soil Water Balance Model (SWBM) over Umbria, yields comprehensively high agreement with the reference data (median R = 0.61 vs. in situ; 0.71 vs. model; 0.83 vs. ASCAT SSM). While the Sentinel-1 signal is attenuated to some extent, the ASCAT’s signal dynamics are fully transferred to the SCATSAR-SWI and benefit from the Sentinel-1 parametrisation. Using the SM2RAIN approach, the SCATSAR-SWI shows excellent capability to reproduce 5 day-accumulated rainfall over Italy, with R = 0.89 against observed rainfall. The SCATSAR-SWI is currently in preparation towards operational product dissemination in the Copernicus Global Land Service (CGLS)

    Irrigation Mapping on Two Contrasted Climatic Contexts Using Sentinel-1 and Sentinel-2 Data

    No full text
    International audienceThis study aims to propose an operational approach to map irrigated areas based on the synergy of Sentinel-1 (S1) and Sentinel-2 (S2) data. An application is proposed at two study sites in Europe-in Spain and in Italy-with two climatic contexts (semiarid and humid, respectively), with the objective of proving the essential role of multi-site training for a robust application of the proposed methodologies. Several classifiers are proposed to separate irrigated and rainfed areas. They are based on statistical variables from Sentinel-1 and Sentinel-2 time series data at the agricultural field scale, as well as on the contrasted behavior between the field scale and the 5 km surroundings. The support vector machine (SVM) classification approach was tested with different options to evaluate the robustness of the proposed methodologies. The optimal number of metrics found is five. These metrics illustrate the importance of optical/radar synergy and the consideration of multi-scale spatial information. The highest accuracy of the classifications, approximately equal to 85%, is based on training dataset with mixed reference fields from the two study sites. In addition, the accuracy is consistent at the two study sites. These results confirm the potential of the proposed approaches towards the most general use on sites with different climatic and agricultural contexts

    On the relation between antecedent basin conditions and runoff coefficient for European floods

    No full text
    The event runoff coefficient (i.e. the ratio between event runoff and precipitation that originated the runoff) is a key factor for understanding basin response to precipitation events. Runoff coefficient depends on precipitation intensity and duration but also on specific basin geohydrology attributes (including soil type, geology, land cover, topography) and last but not least, antecedent (or pre-storm) conditions (i.e., the amount of water stored in the different hydrological compartments, like the river, groundwater, soil and snowpack). The relation between runoff coefficient and basin pre-storm conditions is critical for flood forecasting, yet, the understanding of where, when and how much basin pre-storm conditions control runoff coefficients is still an open question. Here, we tested the control of basin pre-storm conditions on runoff coefficient for 60620 flood events across 284 basins in Europe. To do so, we derived basin pre-storm conditions from different proxies, namely: antecedent precipitation; surface and root zone soil moisture from hydrological models, reanalyses and land surface models also ingesting satellite observations; pre-storm river discharge, and pre-storm total water storage anomalies. We evaluated the coupling strength between runoff coefficient and pre-storm conditions proxies in relation to five classes of European basins, defined based on land use and soil type (as indexed by the Soil Conservation Service curve number CN), topography, hydrology and long-term climate and tested their ability to explain stormflow volume variability. We found that precipitation explains relatively well the stormflow volumes for both small and large events but not very well the peak discharge, especially for large floods. The runoff coefficient of events shows different distributions for the five different classes and correlates well with deep soil storages (such as root-zone soil moisture and pre-storm total water storage anomalies), pre-storm river discharge, and pre-storm snow water equivalent. Overall, these correlations depend on the class. Poor correlations are found against antecedent precipitation index despite its wide use in the hydrological community. Seasonal and interannual climate variability exert a key role on the coupling strength between runoff coefficient and pre-storm conditions by inducing sharp changes in the correlation with season and climate. These results increase our understanding of the coupling between pre-storm conditions and runoff coefficients. This will aid flood forecasting, hydrological and land surface model calibration, and data assimilation. Furthermore, these findings can help us to better interpret future flood projections in Europe based on expected changes in long and short-term climatic drivers.Water Resource

    A Review of Irrigation Information Retrievals from Space and Their Utility for Users

    No full text
    International audienceIrrigation represents one of the most impactful human interventions in the terrestrial water cycle. Knowing the distribution and extent of irrigated areas as well as the amount of water used for irrigation plays a central role in modeling irrigation water requirements and quantifying the impact of irrigation on regional climate, river discharge, and groundwater depletion. Obtaining high-quality global information about irrigation is challenging, especially in terms of quantification of the water actually used for irrigation. Here, we review existing Earth observation datasets, models, and algorithms used for irrigation mapping and quantification from the field to the global scale. The current observation capacities are confronted with the results of a survey on user requirements on satellite-observed irrigation for agricultural water resources’ management. Based on this information, we identify current shortcomings of irrigation monitoring capabilities from space and phrase guidelines for potential future satellite missions and observation strategies
    corecore